Economics at your fingertips  

The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data

Mustapha Mohammedi, Salim Bouzebda and Ali Laksaci

Journal of Multivariate Analysis, 2021, vol. 181, issue C

Abstract: The aim of this paper is to nonparametrically estimate the expectile regression in the case of a functional predictor and a scalar response. More precisely, we construct a kernel-type estimator of the expectile regression function. The main contribution of this study is the establishment of the asymptotic properties of the expectile regression estimator. Precisely, we establish the almost complete convergence with rate. Furthermore, we obtain the asymptotic normality of the proposed estimator under some mild conditions. We provide how to apply our results to construct the confidence intervals. The case of functional predictor is of particular interest and challenge, both from theoretical as well as practical point of view. We discuss the potential impacts of functional expectile regression in NFDA with a particular focus on the supervised classification, prediction and financial risk analysis problems. Finally, the finite-sample performances of the model and the estimation method are illustrated using the analysis of simulated data and real data coming from the financial risk analysis.

Keywords: Nonparametric estimation; Kernel type function estimator; Risk measure; Asymmetric least squares regression; Expectiles; Functional data; Almost consistency; Asymptotic normality; Probability convergence; Strong mixing process (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2020.104673

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2022-07-02
Handle: RePEc:eee:jmvana:v:181:y:2021:i:c:s0047259x20302542