Splitting models for multivariate count data
Jean Peyhardi,
Pierre Fernique and
Jean-Baptiste Durand
Journal of Multivariate Analysis, 2021, vol. 181, issue C
Abstract:
We investigate the class of splitting distributions as the composition of a singular multivariate distribution and a univariate distribution. It will be shown that most common parametric count distributions (multinomial, negative multinomial, multivariate hypergeometric, multivariate negative hypergeometric, …) can be written as splitting distributions with separate parameters for both components, thus facilitating their interpretation, inference, the study of their probabilistic characteristics and their extensions to regression models. We highlight many probabilistic properties deriving from the compound aspect of splitting distributions and their underlying algebraic properties. Parameter inference and model selection are thus reduced to two separate problems, preserving time and space complexity of the base models. Based on this principle, we introduce several new distributions. In the case of multinomial splitting distributions, conditional independence and asymptotic normality properties for estimators are obtained. Mixtures of splitting regression models are used on a mango tree dataset in order to analyze the patchiness.
Keywords: Compound distribution; Multivariate extension; Probabilistic graphical model; Singular multivariate distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X2030258X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:181:y:2021:i:c:s0047259x2030258x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2020.104677
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().