Dynamic tilted current correlation for high dimensional variable screening
Bangxin Zhao,
Xin Liu,
Wenqing He and
Grace Y. Yi
Journal of Multivariate Analysis, 2021, vol. 182, issue C
Abstract:
Variable screening is a commonly used procedure in high dimensional data analysis to reduce dimensionality and ensure the applicability of available statistical methods. Such a procedure is complicated and computationally burdensome because spurious correlations commonly exist among predictor variables, while important predictor variables may not have large marginal correlations with the response variable. To circumvent these issues, in this paper, we develop a new screening technique, the “dynamic tilted current correlation screening” (DTCCS), for high dimensional variable screening. DTCCS is capable of selecting the most relevant predictors within a finite number of steps, and takes the popularly used sure independence screening (SIS) method and the high-dimensional ordinary least squares projection (HOLP) approach as its special cases. The DTCCS technique has sure screening and consistency properties which are justified theoretically and demonstrated numerically. A real example of gene expression data is analyzed using the proposed DTCCS procedure.
Keywords: High dimensionality; Iterative ranking; Marginal correlation; Variable screening (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X20302748
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302748
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2020.104693
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().