Approximating smooth functions by deep neural networks with sigmoid activation function
Sophie Langer
Journal of Multivariate Analysis, 2021, vol. 182, issue C
Abstract:
We study the power of deep neural networks (DNNs) with sigmoid activation function. Recently, it was shown that DNNs approximate any d-dimensional, smooth function on a compact set with a rate of order W−p∕d, where W is the number of nonzero weights in the network and p is the smoothness of the function. Unfortunately, these rates only hold for a special class of sparsely connected DNNs. We ask ourselves if we can show the same approximation rate for a simpler and more general class, i.e., DNNs which are only defined by its width and depth. In this article we show that DNNs with fixed depth and a width of order Md achieve an approximation rate of M−2p. As a conclusion we quantitatively characterize the approximation power of DNNs in terms of the overall weights W0 in the network and show an approximation rate of W0−p∕d. This more general result finally helps us to understand which network topology guarantees a special target accuracy.
Keywords: Deep learning; Full connectivity; Neural networks; Uniform approximation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X20302773
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302773
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2020.104696
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().