On the behavior of the DFA and DCCA in trend-stationary processes
Taiane Schaedler Prass and
Guilherme Pumi
Journal of Multivariate Analysis, 2021, vol. 182, issue C
Abstract:
In this work, we develop the asymptotic theory of the Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA) for trend-stationary stochastic processes without any assumption on the specific form of the underlying distribution. All results are presented and derived under the general framework of potentially overlapping boxes for the polynomial fit. We prove the stationarity of the DFA and DCCA, viewed as stochastic processes, obtain closed forms for moments up to second order, including the covariance structure for DFA and DCCA and a miscellany of law of large number related results. Our results generalize and improve several results presented in the literature. To verify the behavior of our theoretical results in small samples, we present a Monte Carlo simulation study and an empirical application to econometric time series.
Keywords: Cross-correlation; DCCA; Trend-stationary time series (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X20302840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302840
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2020.104703
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().