EconPapers    
Economics at your fingertips  
 

Testing independence of functional variables by angle covariance

Tingyu Lai, Zhongzhan Zhang, Yafei Wang and Linglong Kong

Journal of Multivariate Analysis, 2021, vol. 182, issue C

Abstract: We propose a new nonparametric independence test for two functional random variables. The test is based on a new dependence metric, the so-called angle covariance, which fully characterizes the independence of the random variables and generalizes the projection covariance proposed for random vectors. The angle covariance has a number of desirable properties, including the equivalence of its zero value and the independence of the two functional variables, and it can be applied to any functional data without finite moment conditions. We construct a V-statistic estimator of the angle covariance, and show that it has a Gaussian chaos limiting distribution under the independence null hypothesis and a normal limiting distribution under the alternative hypothesis. The test based on the estimated angle covariance is consistent against all alternatives and easy to be implemented by the given random permutation method. Simulations show that the test based on the angle covariance outperforms other competing tests for functional data.

Keywords: Angle covariance; Distance covariance; Hilbert space; Projection correlation; Test of independence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X2030292X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x2030292x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2020.104711

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x2030292x