Estimating and forecasting dynamic correlation matrices: A nonlinear common factor approach
Yongli Zhang,
Craig Rolling and
Yuhong Yang
Journal of Multivariate Analysis, 2021, vol. 183, issue C
Abstract:
In economic and business data, the correlation matrix is a stochastic process that fluctuates over time and exhibits seasonality. The most widely-used approaches for estimating and forecasting the correlation matrix (e.g., multivariate GARCH) often are hindered by computational difficulties and require strong assumptions. In this paper we propose a method for modeling and forecasting correlation matrices that allows the correlation to be driven nonlinearly by common factors. Our nonlinear common factor (NCF) method simplifies estimation and provides more flexibility than previous factor-based methods. We illustrate its use on energy prices in Boston.
Keywords: Covariance matrix estimation; Dynamic correlation; Energy pricing; Multivariate adaptive regression splines; Nonlinear factor analysis; Positive definiteness (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X20302918
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x20302918
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2020.104710
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().