Heterogeneous hypergeometric functions with two matrix arguments and the exact distribution of the largest eigenvalue of a singular beta-Wishart matrix
Koki Shimizu and
Hiroki Hashiguchi
Journal of Multivariate Analysis, 2021, vol. 183, issue C
Abstract:
This paper discusses certain properties of heterogeneous hypergeometric functions with two matrix arguments. These functions are newly defined but have already appeared in statistical literature and are useful when dealing with the derivation of certain distributions for the eigenvalues of singular beta-Wishart matrices. The joint density function of the eigenvalues and the distribution of the largest eigenvalue can be expressed in terms of heterogeneous hypergeometric functions. Exact computation of the distribution of the largest eigenvalue is conducted for real and complex cases.
Keywords: Hypergeometric functions; Singular Wishart distribution; Stiefel manifold (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X20302955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x20302955
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2020.104714
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().