EconPapers    
Economics at your fingertips  
 

Semi-parametric estimation of multivariate extreme expectiles

Nicholas Beck, Elena Di Bernardino and Mélina Mailhot

Journal of Multivariate Analysis, 2021, vol. 184, issue C

Abstract: This paper focuses on semi-parametric estimation of multivariate expectiles for extreme levels of risk. Multivariate expectiles and their extremes have been the focus of plentiful research in recent years. In particular, it has been noted that due to the difficulty in estimating these values for elevated levels of risk, an alternative formulation of the underlying optimization problem would be necessary. However, in such a scenario, estimators have only been provided for the limiting cases of tail dependence: independence and comonotonicity. In this paper, we extend the estimation of multivariate extreme expectiles (MEEs) by providing a consistent estimation scheme for random vectors with any arbitrary dependence structure. Specifically, we show that if the upper tail dependence function, tail index, and tail ratio can be consistently estimated, then one would be able to accurately estimate MEEs. The finite-sample performance of this methodology is illustrated using both simulated and real data.

Keywords: Dependence; Extreme value theory; Multivariate risk measures; Optimization; Semi-parametric estimation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21000361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:184:y:2021:i:c:s0047259x21000361

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2021.104758

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:184:y:2021:i:c:s0047259x21000361