Inference in high dimensional linear measurement error models
Mengyan Li,
Runze Li and
Yanyuan Ma
Journal of Multivariate Analysis, 2021, vol. 184, issue C
Abstract:
For a high dimensional linear model with a finite number of covariates measured with errors, we study statistical inference on the parameters associated with the error-prone covariates, and propose a new corrected decorrelated score test and a corresponding score type estimator. This work was motivated by a real data example, where both low dimensional phenotypic variables and high dimensional genotypic variables, single nucleotide polymorphisms (SNPs), are available. One of the phenotypic variables is of clinical interest but measured with error. As is standard in the literature, the high dimensional SNPs are assumed to be measured accurately.
Keywords: Decorrelation; High dimensional inference; High dimensional nuisance parameters; Measurement error model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21000373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:184:y:2021:i:c:s0047259x21000373
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104759
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().