Testing the equality of a large number of means of functional data
M. Dolores Jiménez-Gamero and
Alba M. Franco-Pereira
Journal of Multivariate Analysis, 2021, vol. 185, issue C
Abstract:
Given k independent samples of functional data, this paper deals with the problem of testing for the equality of their mean functions. In contrast to the classical setting, where k is kept fixed and the sample size from each population increases without bound, here k is assumed to be large and the size of each sample is either bounded or small in comparison to k. A new test is proposed. The asymptotic distribution of the test statistic is stated under the null hypothesis of equality of the k mean functions as well as under alternatives, which allows us to study the consistency of the test. Specifically, it is shown that the test statistic is asymptotically free distributed under the null hypothesis. The finite sample performance of the test based on the asymptotic null distribution is studied via simulation. Although we start by assuming that the data are functions, the proposed test can also be applied to finite dimensional data. The practical behavior of the test for one dimensional data is numerically studied and compared with other tests.
Keywords: Asymptotic normality; Consistency; Finite dimensional data; Functional data; Testing the equality of means (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21000567
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000567
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104778
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().