EconPapers    
Economics at your fingertips  
 

Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings

Yugo Nakayama, Kazuyoshi Yata and Makoto Aoshima

Journal of Multivariate Analysis, 2021, vol. 185, issue C

Abstract: In this paper, we consider clustering based on the kernel principal component analysis (KPCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons why the Gaussian kernel is effective for clustering high-dimensional data. In addition, we discuss a choice of the scale parameter yielding a high performance of the KPCA with the Gaussian kernel. Finally, we test the performance of the clustering by using microarray data sets.

Keywords: HDLSS; Non-linear PCA; PC score; Radial basis function kernel; Spherical data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21000579
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000579

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2021.104779

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000579