Omnibus test for covariate effects in conditional copula models
Irène Gijbels,
Marek Omelka and
Noël Veraverbeke
Journal of Multivariate Analysis, 2021, vol. 186, issue C
Abstract:
Conditional copulas describe the conditional dependence and the influence that covariates have on the dependence structure between two (or more) variables. Of interest is to test the null hypothesis that the covariates have a specific effect. This paper proposes an omnibus test for testing the null hypothesis of a specified effect of the covariates. The test statistic is designed for having power against many alternatives, and can be used to test for a variety of covariate effects (no effects, linear effects, partial effects, etc.). A special case is the testing problem that the covariates do not affect the dependence structure. In this semiparametric framework the marginal distribution functions are estimated using nonparametric kernel techniques and the parametric dependence model is estimated using maximum likelihood estimation. We establish the asymptotic distribution of the test statistic under the null hypothesis, and evaluate the finite-sample performance of the test via a simulation study, which also includes comparisons with alternative tests. A real data analysis illustrates the practical use of the test.
Keywords: Asymptotic distribution; Conditional copula; Simplifying assumption; Testing for parametric effects; U-statistics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21000828
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000828
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104804
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().