Ultra high-dimensional multivariate posterior contraction rate under shrinkage priors
Ruoyang Zhang and
Malay Ghosh
Journal of Multivariate Analysis, 2022, vol. 187, issue C
Abstract:
In recent years, shrinkage priors have received much attention in high-dimensional data analysis from a Bayesian perspective. Compared with widely used spike-and-slab priors, shrinkage priors have better computational efficiency. But the theoretical properties, especially posterior contraction rate, which is important in uncertainty quantification, are not established in many cases. In this paper, we apply global–local shrinkage priors to high-dimensional multivariate linear regression with unknown covariance matrix. We show that when the prior is highly concentrated near zero and has heavy tail, the posterior contraction rates for both coefficients matrix and covariance matrix are nearly optimal. Our results hold when number of features p grows much faster than the sample size n, which is of great interest in modern data analysis. We show that a class of readily implementable scale mixture of normal priors satisfies the conditions of the main theorem.
Keywords: Gaussian scale mixture; Multivariate regression; Unknown covariance matrix (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001135
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001135
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104835
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().