EconPapers    
Economics at your fingertips  
 

Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis

Shengji Jia, Chunming Zhang and Haoran Lu

Journal of Multivariate Analysis, 2022, vol. 187, issue C

Abstract: Improving estimation efficiency for regression coefficients is an important issue in the analysis of longitudinal data, which involves estimating the covariance matrix of the within-subject errors. In the balanced or nearly balanced setting, we can also regard the covariance matrix of the dependent errors as the bivariate covariance function evaluated at specific time points. In this paper, we compare the performance of the proposed regularized-covariance-function-based estimator and the conventional high-dimensional covariance matrix estimator of the within-subject errors. It shows that when the number p of the time points in each subject is large enough compared to the number n of the subjects, i.e., p≫n1/4logn, the estimation errors of the high-dimensional covariance matrix will be accumulated, therefore the error bound of the proposed regularized-covariance-function-based estimator will be smaller than that of the high-dimensional covariance matrix estimator in Frobenius norm. We also assess the performance of these two estimators for the incomplete longitudinal data. All the comparisons and theoretical results are illustrated using both simulated and real data.

Keywords: Covariance function; High-dimensional covariance matrix; Local linear regression; Method of regularization; Profile weighted least squares; Varying-coefficient partially linear model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001767
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001767

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2021.104900

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001767