On distance-type Gaussian estimation
Elena Castilla and
Konstantinos Zografos
Journal of Multivariate Analysis, 2022, vol. 188, issue C
Abstract:
In this paper, we develop a new procedure for estimating the parameters of a model by combining Zhang’s (2019) recent Gaussian estimator and the minimum density power divergence estimators of Basu et al. (1998). The proposed estimator is called the Minimum Density Power Divergence Gaussian Estimator (MDPDGE). The consistency and asymptotic normality of the MDPDGE are proved. The MDPDGE is applied to some classical univariate distributions and it is also investigated for the family of elliptically contoured distributions. A numerical study illustrates the robustness of the proposed estimator.
Keywords: Density power divergence; Elliptically contoured distributions; Gaussian estimation; Maximum likelihood estimation; Minimum density power divergence Gaussian estimation; Robustness (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001093
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001093
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104831
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().