EconPapers    
Economics at your fingertips  
 

Growth curve mixture models with unknown covariance structures

Yating Pan, Yu Fei, Mingming Ni, Tapio Nummi and Jianxin Pan

Journal of Multivariate Analysis, 2022, vol. 188, issue C

Abstract: Though playing an important role in longitudinal data analysis, the uses of growth curve models are constrained by the crucial assumption that the grouping design matrix is known. In this paper we propose a Gaussian mixture model within the framework of growth curve models which handles the problem caused by the unknown grouping matrix. This allows for a greater degree of flexibility in specifying the model and freeing the response matrix from following a single multivariate normal distribution. The new model is considered under two parsimonious covariance structures together with the unstructured covariance. The maximum likelihood estimation of the proposed model is studied using the ECM algorithm, which clusters growth curve data simultaneously. Data-driving methods are proposed to find various model parameters so as to create an appropriate model for complex growth curve data. Simulation studies are conducted to assess the performance of the proposed methods and real data analysis on gene expression clustering is made, showing that the proposed procedure works well in both, model fitting and growth curve data clustering.

Keywords: Clustering; ECM algorithm; Gaussian mixture model; Growth curve model; Special covariance structures (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001779
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001779

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2021.104904

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001779