Resolvent estimators for functional autoregressive processes with random coefficients
Souad Boukhiar and
Tahar Mourid
Journal of Multivariate Analysis, 2022, vol. 189, issue C
Abstract:
We deal with resolvent estimators of the mean of random operators ruling a functional autoregressive process equation. Under mild conditions on the decay rate of a regularizing parameter, we obtain convergence in probability, exponential bounds, almost sure convergence and limiting law of the estimators and as well as results on resolvent predictors. These estimators achieve parametric rate n (up to a logn factor). Then we propose an estimator of the variance of random operators and show its convergence. These results extend and improve those of Mas in the framework of functional AR Processes with deterministic coefficients. Simulated and real data examples are used to illustrate the performance of these predictors and showing competitive results.
Keywords: AR process; Covariance operators; Functional data; Random coefficients; Resolvent estimators (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001627
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001627
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104884
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().