On linearization of nonparametric deconvolution estimators for repeated measurements model
Daisuke Kurisu and
Taisuke Otsu
Journal of Multivariate Analysis, 2022, vol. 189, issue C
Abstract:
By utilizing intermediate Gaussian approximations, this paper establishes asymptotic linear representations of nonparametric deconvolution estimators for the classical measurement error model with repeated measurements. Our result is applied to derive confidence bands for the density and distribution functions of the error-free variable of interest and to establish faster convergence rates of the estimators than the ones obtained in the existing literature. Due to slower decay rates of the linearization errors, however, our bootstrap counterparts for confidence bands need to be constructed by subsamples.
Keywords: Asymptotic linear representation; Confidence band; Deconvolution; Intermediate Gaussian approximation; Measurement error (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001901
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001901
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104921
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().