Spatial rank-based high-dimensional change point detection via random integration
Lei Shu,
Yu Chen,
Weiping Zhang and
Xueqin Wang
Journal of Multivariate Analysis, 2022, vol. 189, issue C
Abstract:
Detecting change points is an important task to identify an abrupt and significant change in the data generating process. Traditional change point detection methods are not applicable in high-dimensional situations due to many obstacles, such as the requirement of normality or the estimation of the covariance matrix. This paper presented a novel nonparametric method to overcome such issues by using the random integration with spatial ranks, which is tailored to high-dimensional change point detection problems. The proposed method is a unified framework that includes and extends many existing methods and can effectively handle high-dimensional non-normal data, whose asymptotic properties are established under mild conditions. In addition, we developed a computationally efficient algorithm to calculate the rejection thresholds and an effective post-signal diagnostic procedure to identify the potential directions. Finally, numerical studies together with real data examples demonstrated that the proposed method can identify the change point efficiently.
Keywords: Off-line retrospective; On-line monitoring; Random integration; Spatial signs and ranks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21002050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21002050
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104942
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().