Random creation and dispersion of mass
Aubrey Wulfsohn
Journal of Multivariate Analysis, 1986, vol. 18, issue 2, 274-286
Abstract:
Consider evolution of density of a mass or a population, geographically situated in a compact region of space, assuming random creation-annihilation and migration, or dispersion of mass, so the evolution is a random measure. When the creation-annihilation and dispersion are diffusions the situation is described formally by a stochastic partial differential equation; ignoring dispersion make approximations to the initial density by atomic measures and if the corresponding discrete random measures converge "in law" to a unique random measure call it a solution. To account for dispersion Trotter's product formula is applied to semiflows corresponding to dispersion and creation-annihilation. Existence of solutions has been a conjecture for several years despite a claim in ([2], J. Multivariate Anal. 5, 1-52). We show that solutions exist and that non-deterministic solutions are "smeared" continuous-state branching diffusions.
Keywords: Measure-valued; process; stochastic; differential; equation; transition; probability; vague; topology; narrow; topology; branching; Markov; process; immigration; nonlinear; semiflow; on; Banach; space; Trotter's; product; formula; infinitely; decomposable; continuous-state; branching; test; function (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(86)90073-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:18:y:1986:i:2:p:274-286
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().