Transformed mixed-effects modeling of correlated bounded and positive data with a novel multivariate generalized Johnson distribution
Fahimeh Tourani-Farani and
Iraj Kazemi
Journal of Multivariate Analysis, 2022, vol. 190, issue C
Abstract:
Multivariate analysis of multiple correlated responses is often challenging due to the complex data structure. For analyzing such responses, this paper presents a pragmatic multivariate mixed-effects model. The model can flexibly accommodate both symmetric and asymmetric structures by utilizing a novel multivariate transformed distribution belonging to the family of elliptical distributions. It also offers a convenient alternative to most multivariate mixed models for analyzing bounded and positive correlated multivariate responses. The model is based on the median vector and a useful hierarchical representation, facilitating a theoretical investigation of its properties. An additional advantage is its flexibility in modeling correlated response vectors without assuming the existence of the mean. The maximum likelihood approach is proposed to estimate the model parameters. Results are illustrated by applying the proposed methodology to the health data sets for investigating the risk factors associated with childhood obesity.
Keywords: Elliptical distributions; Gauss–Hermite quadrature; Hierarchical representation; Median regression; Multiple correlated responses; Multivariate Johnson transformation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000057
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.104954
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().