Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction
Canyi Chen,
Wangli Xu and
Liping Zhu
Journal of Multivariate Analysis, 2022, vol. 190, issue C
Abstract:
We are concerned with massive data which are possibly heterogeneous and scattered at different locations. We introduce a communication-efficient distributed algorithm to estimate the rank-deficient loading matrix in reduced rank regressions. The distributed algorithm, which proceeds iteratively, reduces the computational complexity substantially. During each iteration, it yields a closed-form solution and refines the previous estimators gradually. After a finite number of iterations, the final solution estimates the rank consistently, and more importantly, achieves the oracle rate. We recast sufficient dimension reduction methods under the framework of reduced rank regressions, which enables us to recover the central subspace and simultaneously estimate its structural dimension. We demonstrate the efficiency of our proposed distributed algorithm through simulations and an application to the airline on-line performance dataset consisting of 118,914,458 observations.
Keywords: Distributed estimation; Oracle rate; Reduced rank regression; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X2200029X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x2200029x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.104991
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().