Targeted principal components regression
Karl Oskar Ekvall
Journal of Multivariate Analysis, 2022, vol. 190, issue C
Abstract:
We propose a principal components regression method based on maximizing a joint pseudo-likelihood for responses and predictors. Our method uses both responses and predictors to select linear combinations of the predictors relevant for the regression, thereby addressing an oft-cited deficiency of conventional principal components regression. The proposed estimator is shown to be consistent in a wide range of settings, including ones with non-normal and dependent observations; conditions on the first and second moments suffice if the number of predictors (p) is fixed, the number of observations (n) tends to infinity, and dependence is weak, while stronger distributional assumptions are needed when p→∞ with n. We obtain the estimator’s asymptotic distribution as the projection of a multivariate normal random vector onto a tangent cone of the parameter set at the true parameter, and find the estimator is asymptotically more efficient than competing ones. In simulations our method is substantially more accurate than conventional principal components regression and compares favorably to partial least squares and predictor envelopes. The method’s practical usefulness is illustrated in a data example with cross-sectional prediction of stock returns.
Keywords: Dependent data; Dimension reduction; Multivariate regression; Principal components (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:190:y:2022:i:c:s0047259x22000318
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.104995
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().