On weighted multivariate sign functions
Subhabrata Majumdar and
Snigdhansu Chatterjee
Journal of Multivariate Analysis, 2022, vol. 191, issue C
Abstract:
Multivariate sign functions are often used for robust estimation and inference. We propose using data dependent weights in association with such functions. The proposed weighted sign functions retain desirable robustness properties, while significantly improving efficiency in estimation and inference compared to unweighted multivariate sign-based methods. Using weighted signs, we demonstrate methods of robust location estimation and robust principal component analysis. We extend the scope of using robust multivariate methods to include robust sufficient dimension reduction and functional outlier detection. Several numerical studies and real data applications demonstrate the efficacy of the proposed methodology.
Keywords: Data depth; Multivariate sign; Outlier detection; Principal component analysis; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000409
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000409
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105013
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().