Measures of concordance and testing of independence in multivariate structure
Wenli Deng,
Jinglong Wang and
Riquan Zhang
Journal of Multivariate Analysis, 2022, vol. 191, issue C
Abstract:
Two random variables are concordant if one variable is large and then the other one tends to be large. Spearman’s rank correlation and Kendall’s tau can be used to measure the trend of both variables rising and falling simultaneously. For a multivariate case, most studies are based on average Spearman’s rank correlation or average Kendall’s tau, which compute bivariate measures of concordance for all pairs of variables and then average the results. A new measure of concordance which considers all the random variables simultaneously is proposed in this paper. The distribution and other relevant properties of this statistic are deduced. Since it is a U-statistic, this statistic follows an asymptotically normal distribution. Furthermore, a nonparametric test method for the independence of multivariate random variables is proposed.
Keywords: Asymptotic distribution; Independence test; Multivariate concordance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000513
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105035
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().