EconPapers    
Economics at your fingertips  
 

Functional linear regression with truncated signatures

Adeline Fermanian

Journal of Multivariate Analysis, 2022, vol. 192, issue C

Abstract: We place ourselves in a functional regression setting and propose a novel methodology for regressing a real output on vector-valued functional covariates. This methodology is based on the notion of signature, which is a representation of a function as an infinite series of its iterated integrals. The signature depends crucially on a truncation parameter for which an estimator is provided, together with theoretical guarantees. An empirical study on both simulated and real-world datasets shows that the resulting methodology is competitive with traditional functional linear models, in particular when the functional covariates take their values in a high dimensional space.

Keywords: Functional data analysis; Linear regression; Signatures (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000483
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000483

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2022.105031

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000483