EconPapers    
Economics at your fingertips  
 

Order selection for regression-based hidden Markov model

Yiqi Lin and Xinyuan Song

Journal of Multivariate Analysis, 2022, vol. 192, issue C

Abstract: Hidden Markov models (HMMs) describe the relationship between two stochastic processes: an observed process and an unobservable finite-state transition process. Owing to their modeling dynamic heterogeneity, HMMs are widely used to analyze heterogeneous longitudinal data. Traditional HMMs frequently assume that the number of hidden states (i.e., the order of HMM) is a constant and should be specified prior to analysis. This assumption is unrealistic and restrictive in many applications. In this study, we consider regression-based hidden Markov model (RHMM) while allowing the number of hidden states to be unknown and determined by the data. We propose a novel likelihood-based double penalized method, along with an efficient expectation-conditional maximization with iterative thresholding-based descent (ECM–ITD) algorithm, to perform order selection in the context of RHMM. An extended Group-Sort-Fuse procedure is proposed to rank the regression coefficients and impose penalties on the discrepancy of adjacent coefficients. The order selection consistency and convergence of the ECM–ITD algorithm are established under mild conditions. Simulation studies are conducted to evaluate the empirical performance of the proposed method. An application of the proposed methodology to a real-life study on Alzheimer’s disease is presented.

Keywords: ECM–ITD algorithm; Group-Sort-Fuse procedure; Hidden Markov model; Longitudinal data; Order selection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000707
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000707

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2022.105061

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000707