Robust inference for change points in high dimension
Feiyu Jiang,
Runmin Wang and
Xiaofeng Shao
Journal of Multivariate Analysis, 2023, vol. 193, issue C
Abstract:
This paper proposes a new test for a change point in the mean of high-dimensional data based on the spatial sign and self-normalization. The test is easy to implement with no tuning parameters, robust to heavy-tailedness and theoretically justified with both fixed-n and sequential asymptotics under both null and alternatives, where n is the sample size. We demonstrate that the fixed-n asymptotics provide a better approximation to the finite sample distribution and thus should be preferred in both testing and testing-based estimation. To estimate the number and locations when multiple change-points are present, we propose to combine the p-value under the fixed-n asymptotics with the seeded binary segmentation (SBS) algorithm. Through numerical experiments, we show that the spatial sign based procedures are robust with respect to the heavy-tailedness and strong coordinate-wise dependence, whereas their non-robust counterparts proposed in Wang et al. (2022)[28] appear to under-perform. A real data example is also provided to illustrate the robustness and broad applicability of the proposed test and its corresponding estimation algorithm.
Keywords: Change points; High dimensional data; Segmentation; Self-normalization; Spatial sign (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22001051
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001051
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105114
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().