Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error
Jeong Min Jeon and
Ingrid Van Keilegom
Journal of Multivariate Analysis, 2023, vol. 193, issue C
Abstract:
In this paper, we study density estimation for mixed Euclidean and non-Euclidean variables that are subject to measurement errors. This problem is largely unexplored in statistics. We develop a new deconvolution density estimator and derive its finite-sample properties. We also derive its asymptotic properties including the rate of convergence in various modes and the asymptotic distribution. For the derivation, we apply Fourier analysis on topological groups, which has not been well used in statistics. We provide full practical details on the implementation of the estimator as well as several simulation studies and real data analysis.
Keywords: Density estimation; Measurement error; Non-Euclidean data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22001166
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001166
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105125
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().