Generating MCMC proposals by randomly rotating the regular simplex
Andrew J. Holbrook
Journal of Multivariate Analysis, 2023, vol. 194, issue C
Abstract:
We present the simplicial sampler, a class of parallel MCMC methods that generate and choose from multiple proposals at each iteration. The algorithm’s multiproposal randomly rotates a simplex connected to the current Markov chain state in a way that inherently preserves symmetry between proposals. As a result, the simplicial sampler leads to a simplified acceptance step: it simply chooses from among the simplex nodes with probability proportional to their target density values. We also investigate a multivariate Gaussian-based symmetric multiproposal mechanism and prove that it also enjoys the same simplified acceptance step. This insight leads to significant theoretical and practical speedups. While both algorithms enjoy natural parallelizability, we show that conventional implementations are sufficient to confer efficiency gains across an array of dimensions and a number of target distributions.
Keywords: Haar measure; Markov chain Monte Carlo; Orthogonal group; Parallel MCMC (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:194:y:2023:i:c:s0047259x22000975
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105106
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().