Estimation and order selection for multivariate exponential power mixture models
Xiao Chen,
Zhenghui Feng and
Heng Peng
Journal of Multivariate Analysis, 2023, vol. 195, issue C
Abstract:
Finite mixture model is a promising statistical model in investigating the heterogeneity of population. For multivariate non-Gaussian density estimation and approximation, in this paper, we consider to use multivariate exponential power mixture models. We propose the penalized-likelihood method with a generalized EM algorithm to estimate locations, scale matrices, shape parameters, and mixing probabilities. Order selection is achieved simultaneously. Properties of the estimated order have been derived. Although we mainly focus on the unconstrained scale matrix type in multivariate exponential power mixture models, three more parsimonious types of scale matrix have also been considered. Performance based on simulation and real data analysis implies the parsimony of the exponential power mixture models, and verifies the consistency of order selection.
Keywords: Exponential power family; Finite mixture models; Order selection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22001312
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x22001312
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105140
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().