EconPapers    
Economics at your fingertips  
 

Penalized Whittle likelihood for spatial data

Kun Chen, Ngai Hang Chan, Chun Yip Yau and Jie Hu

Journal of Multivariate Analysis, 2023, vol. 195, issue C

Abstract: Inference for spatial data is challenging because fitting an appropriate parametric model is often difficult. The penalized likelihood-type approach has been successfully developed for various nonparametric function estimation problems in time series analysis. However, it has not been well developed in spatial analysis. In this paper, a penalized Whittle likelihood approach is developed for nonparametric estimation of spectral density functions for regularly spaced spatial data. In particular, the estimated spectral density is the minimizer of a criterion which is developed based on the Whittle likelihood and a penalty for roughness. This approach aggregates several popular nonparametric density estimation methods into a coherent framework. Asymptotic properties of the proposed estimator are derived under mild assumptions without assuming Gaussianity. In addition, a computationally efficient method is developed to optimize the penalized likelihood function. Simulation results and real data examples are also provided to illustrate the finite sample performances of the methodology.

Keywords: Adaptive smoothing; Frequency domain; Regularization; Spatial lattice data; Spatial periodogram (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x23000027

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2023.105156

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x23000027