Independence tests with random subspace of two random vectors in high dimension
Tao Qiu,
Wangli Xu and
Lixing Zhu
Journal of Multivariate Analysis, 2023, vol. 195, issue C
Abstract:
Testing for independence between two random vectors is a fundamental problem in statistics. When the dimension of these two random vectors are fixed, the existing tests based on the distance covariance and Hilbert–Schmidt independence criterion with many desirable properties, including the capacity to capture linear and non-linear dependence. However, these tests may fail to capture the non-linear dependence due to the “curse of dimensionality” when the random vectors are high dimensional. To attack this problem, we propose a general framework for testing the dependence of two random vectors to randomly select two subspaces consisting of components of the vectors, respectively. To enhance the performance of this method, we repeatedly implement this procedure to construct the final test statistic. The new method can also work for non-linear dependence detection in a high-dimensional setup. Theoretically, if the replication time tends to infinity to get the final statistic, we can avoid potential power loss caused by lousy subspaces. Therefore, the two proposed tests are consistent with general alternatives. The weak limit under the null hypothesis is normal; thus, determining critical value need not resort to resampling approximation. We demonstrate the finite-sample performance of the proposed test by using Monte Carlo simulations and the analysis for a real-data example.
Keywords: Distance covariance; High dimension; Hilbert–Schmidt independence criterion; Independence test; Random subspace sampling; U-statistics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000064
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x23000064
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105160
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().