Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables
Maddalena Cavicchioli
Journal of Multivariate Analysis, 2023, vol. 196, issue C
Abstract:
We consider multivariate Markov switching first-order autoregression models with endogenous explanatory variables, propose a joint estimation algorithm of type EM, written at vector–matrix level, to account for endogeneity, and derive matrix formulas for the ML estimators of model parameters. Then we prove the consistency of such estimators, provide matrix expressions for their asymptotic covariances, and present some tests for endogeneity. Further, a simulation study is proposed to illustrate the theoretical results and provide evidence on the usefulness of the considered model.
Keywords: Asymptotic covariance; Markov switching model with endogenous variables; Maximum likelihood estimates; Nonlinear time series; Testing for endogeneity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000106
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105164
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().