Depth-weighted means of noisy data: An application to estimating the average effect in heterogeneous panels
Yoonseok Lee and
Donggyu Sul ()
Journal of Multivariate Analysis, 2023, vol. 196, issue C
Abstract:
We study the depth-weighted L-type location estimator of multivariate data when the observations are measured with noise. Under a drifting asymptotic framework, we show that the depth-weighted mean estimators with noisy data are still consistent and asymptotically mean-zero Gaussian under mild conditions. We apply the results to longitudinal data models of heterogeneous agents and develop the depth-weighted mean-group estimator of a vector of random coefficients, which estimates the multivariate average effect in heterogeneous panels or among heterogeneous treatment effects. As an empirical illustration, we examine the relative purchasing power parity.
Keywords: Depth; Heterogeneous panel; Longitudinal data; Multivariate average effect; Noisy data; Purchasing power parity; Random coefficient (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000118
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105165
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().