EconPapers    
Economics at your fingertips  
 

A Cramér–Wold theorem for elliptical distributions

Ricardo Fraiman, Leonardo Moreno and Thomas Ransford

Journal of Multivariate Analysis, 2023, vol. 196, issue C

Abstract: According to a well-known theorem of Cramér and Wold, if P and Q are two Borel probability measures on Rd whose projections PL,QL onto each line L in Rd satisfy PL=QL, then P=Q. Our main result is that, if P and Q are both elliptical distributions, then, to show that P=Q, it suffices merely to check that PL=QL for a certain set of (d2+d)/2 lines L. Moreover (d2+d)/2 is optimal. The class of elliptical distributions contains the Gaussian distributions as well as many other multivariate distributions of interest. Our theorem contrasts with other variants of the Cramér–Wold theorem, in that no assumption is made about the finiteness of moments of P and Q. We use our results to derive a statistical test for equality of elliptical distributions, and carry out a small simulation study of the test, comparing it with other tests from the literature. We also give an application to learning (binary classification), again illustrated with a small simulation.

Keywords: Cramér–Wold; Projection; Elliptical distribution; Kolmogorov–Smirnov test (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000222
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000222

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2023.105176

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000222