EconPapers    
Economics at your fingertips  
 

Region selection in Markov random fields: Gaussian case

Ilya Soloveychik and Vahid Tarokh

Journal of Multivariate Analysis, 2023, vol. 196, issue C

Abstract: We consider the problem of model selection in Gaussian Markov fields in the sample deficient scenario. The benchmark information-theoretic results in the case of d-regular graphs require the number of samples to be at least proportional to the logarithm of the number of vertices to allow consistent graph recovery. When the number of samples is less than this amount, reliable recovery of all edges is impossible. In many applications, it is more important to learn the distribution of the edge (coupling) parameters over the network than the specific locations of the edges. Assuming that the entire graph can be partitioned into a number of spatial regions with similar edge parameters and reasonably regular boundaries, we develop new information-theoretic sample complexity bounds and show that a bounded number of samples can be sufficient to consistently recover these regions. Finally, we introduce and analyze an efficient region growing algorithm capable of recovering the regions with high accuracy. We show that it is consistent and demonstrate its performance benefits in synthetic simulations.

Keywords: Enumeration of polyominoes; Fano’s inequality; Gaussian graphical models; Markov random fields; Model selection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000246
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000246

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2023.105178

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000246