Finite sample t-tests for high-dimensional means
Jun Li
Journal of Multivariate Analysis, 2023, vol. 196, issue C
Abstract:
When sample sizes are small, it becomes challenging for an asymptotic test requiring diverging sample sizes to maintain an accurate Type I error rate. In this paper, we consider one-sample, two-sample and ANOVA tests for mean vectors when data are high-dimensional but sample sizes are very small. We establish asymptotic t-distributions of the proposed U-statistics, which only require data dimensionality to diverge but sample sizes to be fixed and no less than 3. The proposed tests maintain accurate Type I error rates for a wide range of sample sizes and data dimensionality. Moreover, the tests are nonparametric and can be applied to data which are normally distributed or heavy-tailed. Simulation studies confirm the theoretical results for the tests. We also apply the proposed tests to an fMRI dataset to demonstrate the practical implementation of the methods.
Keywords: High-dimensional data; Nonparametric methods; Robust procedures (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000295
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000295
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105183
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().