Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space
Haihan Xie and
Linglong Kong
Journal of Multivariate Analysis, 2023, vol. 198, issue C
Abstract:
To relax the linear assumption in function-on-scalar regression, we borrow the strength of copula and propose a novel Gaussian copula function-on-scalar regression. Our model is more flexible to characterize the dynamic relationship between functional response and scalar predictors. Estimation, prediction, and inference are fully investigated. We develop a closed form for the estimator of coefficient functions in a reproducing kernel Hilbert space without the knowledge of marginal transformations. Valid, distribution-free, finite-sample prediction bands are constructed via conformal prediction. Theoretically, we establish the optimal convergence rate on the estimation of coefficient functions and show that our proposed estimator is rate-optimal under fixed and random designs. The finite-sample performance is investigated through simulations and illustrated in real data analysis.
Keywords: Copula model; Function-on-scalar regression; Image analysis; Optimal rate of convergence; Statistical inference (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000726
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000726
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105226
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().