On testing the equality of latent roots of scatter matrices under ellipticity
Gaspard Bernard and
Thomas Verdebout
Journal of Multivariate Analysis, 2024, vol. 199, issue C
Abstract:
In the present paper, we tackle the problem of testing H0q:λq>λq+1=⋯=λp, where λ1,…,λp are the scatter matrix eigenvalues of an elliptical distribution on Rp. This is a classical problem in multivariate analysis which is very useful in dimension reduction. We analyse the problem using the Le Cam asymptotic theory of experiments and show that contrary to the testing problems on eigenvalues and eigenvectors of a scatter matrix tackled in Hallin et al. (2010), the non-specification of nuisance parameters has an asymptotic cost for testing H0q. We moreover derive signed-rank tests for the problem that enjoy the property of being asymptotically distribution-free under ellipticity. The van der Waerden rank test uniformly dominates the classical pseudo-Gaussian procedure for the problem. Numerical illustrations show the nice finite-sample properties of our tests.
Keywords: Elliptical distributions; Hypothesis testing; Latent roots (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000787
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000787
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105232
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().