Test of conditional independence in factor models via Hilbert–Schmidt independence criterion
Kai Xu and
Qing Cheng
Journal of Multivariate Analysis, 2024, vol. 199, issue C
Abstract:
This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.
Keywords: Bootstrap; Conditional independence testing; Factor model; Hilbert–Schmidt independence criterion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000878
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000878
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105241
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().