EconPapers    
Economics at your fingertips  
 

Asymptotic properties of hierarchical clustering in high-dimensional settings

Kento Egashira, Kazuyoshi Yata and Makoto Aoshima

Journal of Multivariate Analysis, 2024, vol. 199, issue C

Abstract: In this study, three asymptotic behaviors of hierarchical clustering are defined and studied with strict conditions under several asymptotic settings, from large samples to high dimensionality, when having two independent populations. We proceed with the current comprehension of the asymptotic properties of hierarchical clustering in high-dimensional, low-sample-size (HDLSS) settings. For high-dimensional data, the asymptotic properties of hierarchical clustering are demonstrated under mild and practical settings, and we present simulation studies and hierarchical clustering performance discussions. Furthermore, hierarchical clustering was theoretically investigated when both the dimension and sample size approach infinity, and we generalized a latent number of populations considering hierarchical clustering in multiclass HDLSS settings.

Keywords: Clustering behavior; High-dimension low-sample-size; Multiclass; Ward’s linkage function (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000970
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000970

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2023.105251

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000970