Matrix-valued isotropic covariance functions with local extrema
Alfredo Alegría and
Xavier Emery
Journal of Multivariate Analysis, 2024, vol. 200, issue C
Abstract:
Multivariate random fields are commonly used in spatial statistics and natural science to model coregionalized variables. In this context, the matrix-valued covariance function plays a central role in capturing their spatial continuity and interdependence. This study aims to contribute to the literature on covariance modeling by proposing new parametric families of isotropic matrix-valued functions exhibiting non-monotonic behaviors, namely hole effects and cross-dimples. The benefit of the proposed models is shown on a bivariate data set consisting of concentrations of airborne particulate matter.
Keywords: Hole effect; Cross-dimple; Matérn model; Coregionalization modeling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000969
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000969
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105250
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().