EconPapers    
Economics at your fingertips  
 

Testing homogeneity in high dimensional data through random projections

Tao Qiu, Qintong Zhang, Yuanyuan Fang and Wangli Xu

Journal of Multivariate Analysis, 2024, vol. 200, issue C

Abstract: Testing for homogeneity of two random vectors is a fundamental problem in statistics. In the past two decades, numerous efforts have been made to detect heterogeneity when the random vectors are multivariate or even high dimensional. Due to the “curse of dimensionality”, existing tests based on Euclidean distance may fail to capture the overall homogeneity in high-dimensional settings while can only capture the moment discrepancy. To address this issue, we propose a fully nonparametric test for homogeneity of two random vectors. Our method involves randomly selecting two subspaces consisting of components of the vectors, projecting the subspaces onto one-dimensional spaces, respectively, and constructing the test statistic using the Cramér–von Mises distance of the projections. To enhance the performance, we repeatedly implement this procedure to construct the final test statistic. Theoretically, if the replication time tends to infinity, we can avoid potential power loss caused by lousy directions. Owing to the U-statistic theory, the asymptotic null distribution of our proposed test is standard normal, regardless of the parent distributions of the random samples and the relationship between data dimensions and sample sizes. As a result, no re-sampling procedure is needed to determine critical values. The empirical size and power of the proposed test are demonstrated through numerical simulations.

Keywords: Cramér–von Mises test; High dimension; Random projections; Two-sample test (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23000982
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000982

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2023.105252

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000982