High-dimensional Bernstein–von Mises theorem for the Diaconis–Ylvisaker prior
Xin Jin,
Anirban Bhattacharya and
Riddhi Pratim Ghosh
Journal of Multivariate Analysis, 2024, vol. 200, issue C
Abstract:
We study the asymptotic normality of the posterior distribution of canonical parameter in the exponential family under the Diaconis–Ylvisaker prior which is a conjugate prior when the dimension of parameter space increases with the sample size. We prove under mild conditions on the true parameter value θ0 and hyperparameters of priors, the difference between the posterior distribution and a normal distribution centered at the maximum likelihood estimator, and variance equal to the inverse of the Fisher information matrix goes to 0 in the expected total variation distance. The proof assumes dimension of parameter space d grows linearly with sample size n only requiring d=o(n). En route, we derive a concentration inequality of the quadratic form of the maximum likelihood estimator without any specific assumption such as sub-Gaussianity. A specific illustration is provided for the Multinomial-Dirichlet model with an extension to the density estimation and Normal mean estimation problems.
Keywords: Asymptotic normality; Bernstein–von Mises; Concentration inequality; Diaconis–Ylvisaker prior; Density estimation; Exponential family; Multinomial-Dirichlet; Total variation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23001252
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23001252
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105279
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().