Shrinkage estimators of BLUE for time series regression models
Yujie Xue,
Masanobu Taniguchi and
Tong Liu
Journal of Multivariate Analysis, 2024, vol. 202, issue C
Abstract:
The least squares estimator (LSE) seems a natural estimator of linear regression models. Whereas, if the dimension of the vector of regression coefficients is greater than 1 and the residuals are dependent, the best linear unbiased estimator (BLUE), which includes the information of the covariance matrix Γ of residual process has a better performance than LSE in the sense of mean square error. As we know the unbiased estimators are generally inadmissible, Senda and Taniguchi (2006) introduced a James–Stein type shrinkage estimator for the regression coefficients based on LSE, where the residual process is a Gaussian stationary process, and provides sufficient conditions such that the James–Stein type shrinkage estimator improves LSE. In this paper, we propose a shrinkage estimator based on BLUE. Sufficient conditions for this shrinkage estimator to improve BLUE are also given. Furthermore, since Γ is infeasible, assuming that Γ has a form of Γ=Γ(θ), we introduce a feasible version of that shrinkage estimator with replacing Γ(θ) by Γ(θˆ) which is introduced in Toyooka (1986). Additionally, we give the sufficient conditions where the feasible version improves BLUE. Besides, the results of a numerical studies confirm our approach.
Keywords: BLUE; Gaussian stationary process; Regression spectrum; Shrinkage estimator; The best linear unbiased estimator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23001288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x23001288
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105282
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().