An independence test for functional variables based on kernel normalized cross-covariance operator
Terence Kevin Manfoumbi Djonguet and
Guy Martial Nkiet
Journal of Multivariate Analysis, 2024, vol. 202, issue C
Abstract:
We propose an independence test for random variables valued into metric spaces by using a test statistic obtained from appropriately centering and rescaling the squared Hilbert–Schmidt norm of the usual empirical estimator of normalized cross-covariance operator. We then get asymptotic normality of this statistic under independence hypothesis, so leading to a new test for independence of functional random variables. A simulation study that allows to compare the proposed test to existing ones is provided.
Keywords: Asymptotic normality; Independence test; Functional variables; Normalized cross-covariance operator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X23001392
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x23001392
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2023.105293
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().