Latent model extreme value index estimation
Joni Virta,
Niko Lietzén,
Lauri Viitasaari and
Pauliina Ilmonen
Journal of Multivariate Analysis, 2024, vol. 202, issue C
Abstract:
We propose a novel strategy for multivariate extreme value index estimation. In applications such as finance, volatility and risk of multivariate time series are often driven by the same underlying factors. To estimate the latent risks, we apply a two-stage procedure. First, a set of independent latent series is estimated using a method of latent variable analysis. Then, univariate risk measures are estimated individually for the latent series. We provide conditions under which the effect of the latent model estimation to the asymptotic behavior of the risk estimators is negligible. Simulations illustrate the theory under both i.i.d. and dependent data, and an application into currency exchange rate data shows that the method is able to discover extreme behavior not found by component-wise analysis of the original series.
Keywords: Blind source separation; Hill estimator; Independent component analysis; Moment estimator; Tail index (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24000071
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000071
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2024.105300
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().