Linearized maximum rank correlation estimation when covariates are functional
Wenchao Xu,
Xinyu Zhang and
Hua Liang
Journal of Multivariate Analysis, 2024, vol. 202, issue C
Abstract:
This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.
Keywords: Functional principal component analysis; General functional single-index model; Linearized maximum rank correlation; Rate of convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X24000083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000083
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2024.105301
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().